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Experiment and simulation of laminar and turbulent ferrofluid pipe flow
in an oscillating magnetic field
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Laminar and turbulent pipe flow of a ferrofluid with an imposed linearly polarized, oscillating, magnetic
field is examined here. Experimental results show a fractional pressure drop dependence on flow rate, magnetic
field strength, and oscillation frequency. Calculations are presented, which show that ferrofluid theory can
explain the flow phenomena in laminar and turbulent pipe flow. The model requires an initial fit of key
parameters but then shows predictive capability in both laminar and turbulent flow. Simulation results are
found to be essentially independent of the spin boundary condition due to an approximation of spin viscosity
that is very small. A low Reynolds numbkre model is used to model the turbulent pipe flow.
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I. INTRODUCTION [2] as u,(H,Q)=[un(H,Q)/n(0,0)]-1, is referred to
herein as the fractional pressure drop. Sometimes the litera-
A ferrofluid is a liquid with stable nanoscale magnetic ture refers to a negative viscosity effect, or sometimes even
particles suspended within it such that it responds strongly t@o a negative viscosity. Since the viscosity is always positive,
magnetic fields. Brownian motion keeps the particles fromand a reduction in viscosity is quite common with polymers
settling in an external field, and an attached layer of surfacwhere it is called shear thinning, the terminology “negative
tant helps prevent particle agglomeration. Applications sucRjscosity effect” is not used here. Further, Baetial. [2]
as hermetic seals in computer hard drives and increased hegfowed how the fractional pressure drop depends upon the
transfer in electrical devices are possible due to the uniqugagnetic field strength and oscillation frequency and set the
properties and behavior of ferrofiuids. o condition that the oscillation frequendy multiplied by the
In ferrofluid flows, the net effect of a magnetic field on grownijan relaxation timerg must be greater than one for the
the suspended nanoscale particles can be seen as an incregggtional pressure drop to be negative. Zeuner, Richter, and
or decrease in the effective viscosity. This effect on effectiquehberd:g] conducted an experiment similar to Baetial.
viscosity has been the topic of a number of experimentaf2] with an ac solenoid wrapped around a portion of the
studies and theoretical studies for Couette or Poiseuille flowpipe, but extended the study to a much larger range of mag-
The current study is concerned with the effect of a linearlynetic field strengths and oscillation frequencies. The results
polarized, oscillating, magnetic field on pressure driven fery Zeuner, Richter, and Rehbef§] also imply thatQrg
rofluid pipe flow in both laminar and turbulent flow regimes. < 1 \when negative fractional pressure drops appear. Further,
Some experimental studies of Poiseuille flow are ava”‘Zeuner, Richter, and Rehbelig] present evidence that, is
able in the literatur¢1—4]. McTague{1] established that the 5 fynction of(). Table | compares the ranges of experimental
effective viscosity increases with the application of a steady.gngitions for both experiments. These experiments were
magnetic field and that the magnitude of this increase is dgimited to slow, laminar flows. Kamiyamf@] studied flow in
pendant upon both the field strength and orientation. Bacr pipe with a dc solenoid creating a steady magnetic field.
etal. [2] showed that when a linearly polarized magneticThe data is limited to a single magnitude of the magnetic

field oscillates down the axis of the pipe at a high frequencysie|q, but does encompass both laminar and turbulent flow.
the effective ferrofluid viscosity can actually become lower

than the viscosity in the absence of a magnetic field. The

reduced viscosity, described for laminar flow by Baeril. TABLE |. Comparison of the range of experimental conditions

in Bacri, Perzynski, and Shliomif2] and Zeuner, Richter, and
Rehberd 3]. Brackets indicate powers of ten.
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Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany. Bacriet al.[2] Zeuneret al. [3]
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Pullman, WA 99403. Q range 0-1 kHz 0-22 kHz
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The results reported here are at an oscillation frequency Flow meter
range similar to Bacret al. [2] (0—1 kH2, and at a field _
strength range larger than Zeuner, Richter, and RehIBrg  Fiow from . %’ﬁﬁbg‘}zmﬁd
(0—1264 O¢ Contrary to previous work, the results here are ferrofluid reservoir
obtained for a range of laminar and turbulent flow rates in an ™"
oscillating magnetic field. The data show that the depen- Pécatagic
dence of the fractional pressure drop on the flow rate is sig- pame Pressure transducers
nificant.

Theoretical studies of the flow of a ferrofluid with an FIG. 1. Schematic of the experimental setup.
applied magnetic field are also available in the literature
[5—7]. Shliomis[5] used the equations of ferrohydrodynam- Without magnetic field minus one:
ics, a derived magnetization equation, and a nonlinear mag-
netic equation of state to study planar Couette flow with a AP(H)_
constant magnetic field. His results compared well with the AP(0) ™
Poiseuille flow experiment of McTaguéd]. More than 20 y . ) o
later, Shliomis and Morozoy6] analyzed planar Couette 1NUS, the increase in pressure drop due to this field is mea-
flow with a linear polarized oscillating magnetic field. Using sured. Again, this fractional pressure drop in laminar flow is
the same equations of ferrohydrodynamics and magnetizébe same as the reduced_ viscosity mentioned in the literature.
tion as Shliomig5], they showed that the theory predicted Experimental results mcludg pressure drop_vs flow rate
that a negative fractional pressure drop could be achieved fdpeasurements at zero magnetic field and fractional pressure
any Q75>1. While Bacriet al. [2] experimentally showed drop as it depends upon flow raf magnetic field strength
the existence of a negative fractional pressure drop, the prélo. and frequency of oscillation of the magnetic fiefd
dictions of Shliomis and Morozo6] disagree with the be- The experimental range éf, is 0-1264 Oe and the range of
havior of the experimental data. Baet al. showed that the € IS 0-1000 Hz. The experimental fluid is a water based
magnetization equation put forth by Marsenyuk, Raikherferrofiuid, EMG-206, from Ferrotec. _
and Shliomis[8] provided a truer prediction of the experi- E_xpenmental results of the f_ractlonal pressure drop in the
mental data. Zahn and Pio¢8] investigated the torque felt laminar and turbulent flow regimes as a functionHf and
by a ferrofluid particle in four different unsteady magnetic Q @ré shown for &) of 400 Hz in Fig. 2. The results show
fields. Their analysis used the equations of ferrohydrodynamthat in laminar flow the fractional pressure drop at a constant
ics, Shliomis’ 1972 magnetization equatifl, and a mag- magnetlc field decreases vylth increasing flow rgte. On(_:e the
netic equation of state with a constant effective magnetié'OW is turbulent, the fractional pressure drop is relatively
susceptibility. Their use of a constant magnetic susceptibilionstant for changing flowrates at a constegt When the
allows them to develop an analytical solution to the nonlin-magnetic field strength is increased, the fractional pressure
ear torque term in each of the four cases. Feldeffipétud- drop increases in all cases. These are the experimental results
ied Poiseuille flow in a pipe with a linear polarized oscillat- to be simulated. _ . _
ing magnetic field directed down the axis of the pipe. He N this experiment a negative fra_ctlonal pressure dr_op is
used the equations of ferrohydrodynamics and considerg@ot observed. This does not contradict any results previously
three different magnetic relaxation equations, all with non-Published; the experiment is just not in the range where this
linear magnetic equations of state. The three he investigateRffect is expected. The previous experiments established that
are: Shliomis[5], Martsenyuk, Raikher, and Shliom[g], @ general criterion for seeing a negative fractional pressure
and Felderhof and KroftL0]. His analysis concluded that the drop is 27g=1. The largest value estimated here(ls
relaxation equation of Marsenyuk, Raikher, and Shliof8is

@

provided a good estimation of the real behavior in a dilute 01 Magnetic field strength (O)
ferrofluid, although they were all similar at small amplitudes =790
of the oscillating magnetic field. 0.08 1 Lami Turbulent Sed74
“A-316
Il. EXPERIMENT AP(H)O.IOG ] -8-158
. . . . AP(0) . .
The experiment is designed to study the laminar and tur- 0.04 1 Increasing magnetic field, H
bulent fractional pressure drop of ferrofluid flow under the
influence of a linearly polarized, oscillating, magnetic field. 0.02

A schematic of the setup is given in Fig. 1. A peristaltic
pump is used to pump the ferrofluid through the system at =7 = —E]
flowrates ranging from 330 mimirt to 1400 mimin™. ° ; *
Pressure drop measurements are made over two equal lengt 300 800 1300

i . . . Q (ml/min)
sections of 3 mm diameter pipe. Only one of the sections has
an applied magnetic field. The fractional pressure drop is the FIG. 2. Experimental fractional pressure drop as a function of
pressure drop occurring in the section with magnetic fielcthe pipe flow rate and magnetic field strength at an oscillation fre-
applied divided by the pressure drop occurring in the sectiomuency of 400 Hz.
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=0.061. Our results agree qualitatively with tiierg<<1 d’0 1deo o du
data of Bacriet al.[2] and Zeuner, Richter, and Rehb¢gj. 7' aZ rar r—z) +2{| =gy 20|+ #eMXH=0
The goal of this research is to use the equations of ferro- (6)

hydrodynamics to predict and reproduce the experimental

data from the pipe flow experiment in both the laminar andfor the linear momentum and spin, respectively. The torque
the turbulent regimes. This includes predicting the paramterm in the spin equation is evaluated using the magnetiza-
eters that go into the governing equations, numerically solvtion equation, following the work of Zahn and Pio¢8].

ing the equations up to the boundary, and using a boundaryhey assume a constant effective magnetic susceptibility,
condition on the particle spin that gives correct results. Nuwhich allows for analytic expression of the torque. The con-
merical simulation of the ferrofluid flow allows us to deal vection term in magnetization equatiof) is zero for fully

with variable mean velocity and spin gradients. developed flow since the velocity and magnetization gradient
are orthogonal. This is true in laminar flow and is assumed to
IIl. MODEL EQUATIONS be true in turbulent flow, too. The nondimensional torque

term for a linear polarized magnetic field, time averaged over
The equations of ferrohydrodynamics as described byne period is
Rosensweid11] are used to describe ferrofluid flow. They

include an equation for linear momentum (moMXH) 0.5

T~ azrprlae o) xolcerdn))
@

To

Pl ot

Ju
—+u-Vu)=—Vp+(,u+§)V2u+2§V><w
where

+uoM-VH 2
Ho @ a=(w1)?—(Q7)%+1+x,,
and an equation for the spin rdi@ internal angular momen- b=7(2+ xo).
tum)
Jo C=w7+1,
| —+u-Vo|=7"V2e+2{(VXu—2w)+ uMXxH,
Pl = w) 7' Veo+2{( w)+ uo d=f=0r

()
e=(1+yg) —wr.
wherep is the densityu is the dynamic viscosity! is the
vortex viscosity,u is the permeability of free spackis the  Equations(5) and(6) with Eq. (7) as the torque term are the
moment of inertia per unit mass of a ferrofluid particle, andset of equations that are solved for laminar flow.

7' is the spin viscosity. An equation for the magnetizatibn For the turbulent flow, an additional assumption is made.
is also needed. The one proposed by Shliofbisis used Since the length scale of the ferrofluid particles is much less
here than the smallest length scale of the turbulence, the hypoth-

esis is that the turbulence properties do not change from the
1 case of a Newtonian fluid with the same viscosity as the
—r TU-VM=0xM-—(M=My), (4)  ferrofluid. The Kolmogorov length scale ratio of largest ed-
dies, L, to smallest eddiesy, is given asL/=Re¥* [12].
Dimensionally considering to be the diameter of the pipe, 3
mm, and a Re of 19 the estimate for is 3 um, which is
I much greater than the diameter of the particle, 30 nm.
In the turbulent flow analysis, the dependant variables are
epresented by a medrepresented by brackets, and fluc-
éuating (represented by an asterigk, part, e.g.,u=(u)
d u*. Equationg2) and(3) are then time averaged. The time
average of the turbulent spin equation remains the same as
the laminar spin equation, assuming that the time average of
inertia of a ferrofluid particle is so small that the Convectivethe torque is the same as the time average over one period of

term in the spin equation can be ignored. Using these aso_scillation. The time average of the_ momentum equation is
sumptions and writing the equations in cylindrical coordi- not the Same as the Ia_mmar case. Time averaging the rllonl!n—
nates gives ear convective term introduces the closure problem; this

means that there are now more unknowns than equations.
) The unknowns, called the Reynolds stress terms, have to be

whereMy is the equilibrium magnetization andis the re-
laxation time. .

Simplifications to the momentum and spin equations arec';tII
made to reduce them to a tractable form. First, steady, fully
developed, axisymmetric flow in the pipe is assumed. An
entry and exit effects due to the oscillating magnetic field ar
ignored. Second, the magnetic field produced by the solenoi
is assumed to vary only in time, making spatial gradients
i.e., theM-VH term, equal to zero. Finally, the moment of

=0 (5 modeled. A two-equation eddy viscosity model is employed
Constant as a closure model to solve for the unknown Reynolds stress.
The time-averaged version of the momentum equation is
and given as

1d du ) ld(wr) (dp
[ TR T T
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1d d{u 1 d({w)r) 2 R+\2 y) ]2
Fa[r((“”)—ér>‘<“*"*> var g fz:{l‘gexp(‘(ﬁ) ) 1‘3”(‘?) *
&<p>) B
“\ Tz =0. ® D=0,
( 9z Constant
E=0,

Using the eddy viscosity assumption, set the Reynolds shear

stress component to where Rr=k?/ve andy*=[1—(r/R)]Re,. The functions

a(u) and constants in the Myong and Kasagi moded] are not
(9)  changed in our simulation.
Next, the laminar and turbulence equations are made non-
plmensmnal In the laminar flow equations, the variables are
ormalized as followsr by R, u by Upyg, and o by
J e /R. The normalized laminar equations are then

U* *\ __
(U v*)=—pr ar
The bracket notation is dropped here and it is implied that al
turbulent equations are now dealing with time-average
guantities. The time-averaged momentum equation then b
comes

19 au 1 d(rw) B
1d o ul ld(er) (dp o T [(A+Cy) - +2C, - ——+C=0, (19
r dr rp+g ’“T)dr gr dr azc s
onstant 2

10 o A I (R PO EPS

) sz r o 2 o <Y 4(To)=0.
where ut=pC f L (12) (16)

T bl g

For the turbulence equatiomss normalized byR, uby u,,
is the eddy viscosity. Now, two more equations are used fok by u, /R, k by u?, ande by u*/R. The normalized turbu-
k, the turbulent kinetic energy, ang the turbulent kinetic |ent equations are then
energy dissipation rate. Specifically, the low Reynolds num-

ber k-¢ model proposed by Myong and Kasddi] is used 19 wr Ju 1 d(rw)
because, when it was developed, it was tested against fully 2Re+ - a—f( 1+ 7+Cl o t2Ci - ——=0,
developed pipe flow; thus, it directly relates to our situation. 17)

Further, the Myong and Kasagi model3] was shown to

give the best flow predictions in a pipe when compared to Po 1o o au
nine other models by Hrenyat al.[14]. The general form of C3(—2+ - 2)+2(___2w +Cy(To) =0,
the low Reynolds numbetande equations for steady, fully LT ar
developed, turbulent pipe flow are givEt4] as (18)
1 d dk du 1 d 14 vt 1 dk+VT du 2 R D R2 _0
car e Jartear) emP=0 @2 pgr 1y gt gy TeReB L) =0
(19
1 d vt d8 Cslf1VT8 du 2 C£2f282
Far e S ] SR e 1d [ rmljde o ovre(du?
(13 rdr v oo, /dr TPy kidr
Mt e’ R?
where vr="". ~Ceafop ~Re+E & =0, (20)

By assumption, the effect of a vortex viscosity on the turbu-for the momentum, spin, kinetic energy, and dissipation rate,
lent kinetic energy and rate of dissipation is neglected. Theespectively. In the above equations
model constants, functions, abdandE terms depend on the

specific low Reynolds numbére model being used. For the l

Myong and Kasagi moddlL3] they are CF;, (21)
C,=0.09, C,=14, C.,,=18, oy=14, o0,=13,
A @2
y+ 3.45 'U“UAVG J Constant
f,=|1—exp —55||| 1+ =],
¢ o[ TRy
"

fi=1, (14) Ca= R?;’ @3
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_ MOHSR R2
C,= u (24
and
UR 7
Re,=—o, (25

14

are unitless parameters that arise from the nondimensional-

ization. The friction velocity is defined as,=/rya/p,

wherer,, is the shear stress at the wall. The first derivative

of velocity, which is needed in th& and & equations, is

evaluated analytically at each grid point based on current F|G. 3. A simple model of a ferrofluid particle is a two-layered
values ofk, ¢, and w. sphere with different densities in each layer.

IV. PARAMETERS AND BOUNDARY CONDITIONS 8 5 5_p5
1_577[P1R1+P2(R2_ R)]

m

To solve the problem for our particular ferrofluid, the pa- |
rametersu, p, ¢, ', 78, and xq along with the boundary
conditions have to be specified. . . . . .
The dynamic viscosity: is estimated by the regression of 1N€ SPin_viscosity estimate is a very small value of
laminar AP vs Q data in the absence of a magnetic field. A8-4<10 “"kgms = makingC3=1.5xX10 ™. Table Il lists
value of »=0.003852 1 Pas is found from this analysis. TheValues of the parameters determined thus far.
value of the density is accurately determined with a PAAR_1he relaxation time physically relates to the amount of
DMA 45 digital density meter and ip=1187.4 kg m>. time it takes for a ferrofluid particle to orient its magnetiza-
This technique makes density measurements based on tfign vector with an external field that is not originally in the

natural frequency change oft&tube oscillator when loaded same direc_tion. Two pre; of relaxation times are rel_evant.
with different gases or liquids The Brownian relaxation time refers to the actual rotation of

The vortex viscosity is estimated usidg 1.5u ¢y, [11], the particle. The Nel relaxation time refers to the magneti-

where &, is the hydrodynamic volume fraction of the par- zation moment rotating inside of the particle. Brownian re-

ticles. The hydrodynamic volume fraction is estimated by![i)l(ggmtiséypfigynnr:]u;gcjége;h?hnugb:ﬁ?gg%?nfogr?;;
using dm=Msre/MssoLin, ¢m/bs=0.74, and éy/ s P ger, s, P

—10, whereg,, is the solid magnetic part of the volume is ignored and the relaxation timels equal to the Brownian
’ m

fraction, ¢ is the total solids part of the volume fraction, relaxation timerg . Shliomis[5] proposed that
Mser is the saturation magnetization of the ferrofluid, 3v
Ms soLp IS the saturation magnetization of the magnetic sol- o= h'“C,
ids that make up the ferrofluid. These equations are based on KT
the analysis for water based ferrofluids by Berkovsky,
Medvedev, and Krako{15]. With Mgge=11.94 kAm ? where V,, is the particle’s effective hydrodynamic volume,
andMg 5o p=478 kA m !, this makes//u=C,=3 forour  #c is the dynamic viscosity of the carrier fluid, ahd" is
ferrofluid. thermal energy. Because the relaxation time is directly pro-
The spin viscosity is estimated using kinetic molecularportional to the volume of the particles, any agglomeration
theory of an ideal gas and multiplied by 1000 to get anWill lead to larger relaxation times. For turbulent flow this
estimate for our liquid since liquid viscosities are typically relaxation time is taken as a constant. For laminar flow, the
100-1000 times larger than gas viscosities. Bird, Stewart€laxation time is allowed to vary with the flow rate and
and Lightfoot[16] derive the dynamic viscosity of an ideal oscillation frequency. The hypothesis is that in turbulent flow
gas from a molecular point of view using a linear momentumthe particle agglomerates will be broken up as far as pos-
balance. Our approach is similar except we use internal an-
gu|ar momentum instead of linear momentum. The resumng TABLE Il. Numerical values of selected parameters used in the

(27)

(28

expression for the spin viscosity is ferrofluid model. Brackets indicate power of ten.
2 1 u(Pag 5 3.84-03]
n=3 Mk T—5— 1. (26) p (kgm>) 1187.4
™ Db {(Pas 1.99-03]
7' (kgm s_l) 6.40 —20]
If the ferrofluid particle is considered as a two-layered sphere Ci={lpn 0.5
with different densities in each layésee Fig. 3the moment Cs=1'IR% 1.50—11]

of inertia per unit mass is then
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sible, giving a minimum relaxation time, but in laminar flow Re=5000 with N=40 produces ay,=4.2um. With R
particle agglomerations can occur, especially since sheat1.5mm,y, is only 0.28% of the way to the center of the
stresses go to zero at the center of the pipe. Specifically, Wgipe. The benefit of using variable spaced nodes is apparent
assume that particle agglomeration in laminar flow has a&ince 356 equidistant nodéalmost 9 times as manyare
dependence upon shear rate and oscillation frequency. Aéquired to get the samg. For a given number of nodaég
lower flow rates, larger agglomerations are postulated to 0Ghe rest of the mesh is generated using=y;_;

cur, causingrg to increase. Kamiyamjgt] also suggests that +(Yi_1—=Yi_»)P, whereP is the value that makegy=1.

the time constant in laminar flow is variable with flow rate, Note thaty;= (r;/R)— 1, and that the value d®, which is

but is constant in turbulent flow. They relate this to agglom-greater than 1, is found iteratively based n

eration in their water-based ferrofluid. Zeuner, Richter, anC? The first derivative of Ve|ocity that appears in the SMn’
Rehberg 3] also present evidence of a time constant depenand e equations is calculated exactly by integrating the mo-
dence upon frequency. mentum equation. This is possible because the pressure drop

Finally, the effective magnetic susceptibility is allowed to term is a constant. For example, doing this to E) yields
depend upon the strength of the magnetic field in different

experiments, but a constant value is used at a given magnetic du (Rer+2C w)

field strength. This is only an approximation, but it greatly ar —,u :

simplifies the analysis. When a steady magnetic field is ap- (1+ —T+C1
o

plied to our nonflowing ferrofluid and the resulting material
magnetization is measured, thevs H curve is nonlinear. At
low field strengths the curve becomes almost lingenich
means a linear magnetic equation of state is appropriate
The assumption is that the magnetic susceptibility in the cas
with flow and an oscillatingH will exhibit the same basic
behavior as can be found from a vs H curve from a

This form of the derivative is then used in Eq48)—(20).
Doing this gives more stable solutions compared to when the
gerivative is approximated using a second order finite differ-
ence method.

The laminar and turbulent equations are discretized ac-
: . ) cording to the finite-volume method. For each dependant
steady, nonflowing, case. That is, the magnitudeygfde- variableA¢=Db has to be solved. The diffusion terms make

creases with increasing field strength. A tridiagonal. Negative source terms are brought iAtby

To solve the laminar and turbulent equations, boundar 4 .
conditions must be imposed for each of the dependant varllf-r;?\/?de:g?gy()lgvss:znpks{eﬂrg'e;r:;plégli(t?gr\]'vn variablep is

ables. The one-dimensional domain is from the center of thé . . Lo .
Because of nonlinear terms, iteration is necessary. Initial

pipe (r=0) to the wall of the piper(=1). At the center of guesses for all variables are made. Then, the matrix equation

the pipe, the spin boundary condition is zera)(-,=0, X .
while the other variables have the usual symmetry conditior‘wcor each dependant variable is updated separately. The order

N " _ in which they are solved in i%, &, o, thenu. The most
S/(é:f)/gtr))/rleﬁfﬁlgjtﬁled ;)c; =s(l)i; (C%Sn/;{iz;om;a A_toth?h\gaklilr’]égg current values of the dependant variables are always used in
- 3 r=1—YY,

energy is equal to zerok), = 0; the dissipation rate at the the terms that go inté\ andb. The equations are iterated

wall is (¢), - = (1/Re)(d?/dr?) [13]. The boundary condi- UMl the norm of the error,

tion for the spin rate at the wall is unknown but four different N

possibilities are evaluatedw(, -, =0, the spin is zero at the 2 [(ugurrent uipreviou32+(wicurrem_ wipreviouﬁz

wall; (dw/dr)|,—1=0, there is no couple stress at the wall; i=1

(w),-1=13V Xu the spin of the particles is the same as that 172

\(l)vfaﬁ. Newtonian fluid; and the equation is satisfied at the + (kicurrent_ kiprevious)2+ (8;:urrem_8iprevious)2] . (29

at the current iteration is less tharx1.0~8
To solve at specified flowrates, the program is made to
With boundary conditions and numerical values of theconverge on a known value of the average velocity,
model parameters specified, the equations can be solved ntavc specifie¢ Tis is accomplished by iterating about values
merically. The laminar and turbulent equations are dis0f the nondimensional pressure drop using the secant
cretized and manipulated to ensure stability and positivitynethod. The iteration continues untilU s/ simuiated
using the finite-volume method described by Patardtd@l.  —Uac speciied<10™°.
The laminar equations are also solved using the orthogonal The simulated pressure drop for the laminar flow is cal-
collocation method18] with only a few collocation points in ~ culated using the Hagen-Poiseuille equation.
the domain. Most simulations reported herein are derived
using the finite volume method. AP 8uUag simulated
For each turbulent case, a mesh that increases its density L R?
as the wall is approached is used. This allows efficient and
accurate resolution of profiles exhibiting steep gradients neak force balance on the pipe using the value of stress at the
the wall. The distance of the first node away from the wall iswall is done to find the average pressure drop in turbulent
specified asy,=0.5/Re.. As an example, turbulent flow at flow,

V. NUMERICAL METHOD

. (30
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18 | o Myong & Kasagi Model 3.5 o Experimental AP
16 4 —Empirical Correlation 3 - —Simulated AP
14 + 2541
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FIG. 4. The fully developed turbulent velocity profile foranon- ¢ 5. Experimental ferrofiuid pressure drop versus flow rate
magnetic, Newtonian fluid compared to the empirical law-of-the-ya¢5 with the magnetic field turned off, compared to simulation.

wall. The Myong and Kasagi-e model[12] with Re,=150. The 14 model uses the parameters in Table II.
empirical equations for the different layers are taken from Thomp-

son[18]. U™ is the velocity normalized by, andy™ is y normal-
ized by v/u., . B. Ferrofluid, no magnetic field imposed
The ferrofluid model is used to simulate pressure drop
AP 27, versus flow rate data when the magnetic field is turned off.
—_—= . (31 For both laminar and turbulent flow the values of the param-
eters in Table Il along withr=1.5 us andy,=0.04 are used
in the model. Again, the dynamic viscosity is obtained by a
The stress at the walk,, , is determined from the definitions regression of the laminaH=0) data.
of Re, andu. . The results, in Fig. 5, are the same for all four boundary
The fractional pressure drop in the turbulent simulationsconditions of spin. In fact, the spin profiles for this case are
has an estimated error of 0.065% when 40 variable densitifiéntical except for a very thin boundary layer near the wall.
grid points are used. The fractional pressure drop in the lami¥Vhatever the true boundary condition, the spin boundary
nar simulations has an estimated error of-8123% when ayer here does not extend past the first node away from the
30 equidistant grid points are used. Numerical accuracy i¥/@ll- The reason Is that the estimate of the spin diffusion
estimated by: finding the solution at various valuesNpf coefficient’ is very small, removing the effect of the spin
plotting the fractional pressure drop vs K7, and extrapo- d_|ffu5|o_n term. '_I'h|s observ_at|0n holds in all gubsequent
lating the fractional pressure drop to K)2=0 to get an simulations making the fractional pressure drop independent

estimate of the exact answer. Orthogonal collocation witff the choice of spin boundary condition at the wall. The
from 3 to 7 collocation points gave results for the laminarchoice is made to use the boundary condition that satisfies

flow that differed only by one in the ninth significant digit. (n€ Spin equation at the wall for all subsequent simulations.
This boundary condition is chosen because it allows the spin
profile to smoothly approach the wall. Others, namely,
VI. RESULTS (w),—1=0 and @),_,= 3V Xu, often displayed a dramatic
visual discontinuity in the spin profile by jumping from the
This section is presented in three main parts: simulatiortalculated value a, to the value imposed at the wall. If the
of a nonmagnetic, Newtonian fluid flowing through a pipe, spin diffusion is completely neglected, the spin of a particle
simulation of a ferrofluid flowing through a pipe with no no longer depends on the spin rate of surrounding particles;
magnetic field imposed, and simulation of ferrofluid flow it only depends on the torque induced by an external mag-
through a pipe with a linear polarized magnetic field oscil-netic field
lating down the axis of the pipe.

+Cy(Ty)=0. (32

Ju
2( i 2w
A. Nonmagnetic, Newtonian fluid
The turbulent velocity profile for a nonmagnetic, Newton-
ian, fluid compares closely to the empirical law-of-the-wall
(Fig. 4). The empirical equations for the different layers
shown in Fig. 4 are taken from ThompsptB]. The friction
factor also compares closely to the Blasius and Nikuradse Next, the problem is solved with the magnetic field turned
equations at various turbulent Reynolds numbers. This givesn. The comparison of the simulated fractional pressure drop
confidence that the Myong-Kasagi low Reynolds nuniber to experimental data over the range of experimental condi-
model[13] is being solved correctly. tions is used to test the validity of the ferrofluid model.

C. Ferrofluid, linearly polarized, oscillating magnetic
field imposed
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FIG. 8. Simulated profiles for turbulent ferrofluid flow with an
FIG. 6. Presentation of the nondimensional time-averagedmposed oscillating magnetic field. The nondimensional variables
torque term[Eq. (7)] for a linearly polarized magnetic fielgB]. profiles are: velocityJ, spinw/3, kinetic energy &, dissipation rate
Xo=1. The productser andQr are also nondimensional. g, and time averaged torquy,. Q= 1400 mlmin*; H=948 Oe;
1 =60Hz. The model parameters are as in Table Il with
=1.5us andy,=0.04.U is normalized byu,., o by u./R, k by

2 3 2
In pipe flow, the vorticity is not constant, causing the spinU € by Uz/R, and torque byuoHy.

to vary across the domain. As a result, there is a different

value of the torque term at each discretization point in the

domain (since the torque is dependent upaeh. Figure 6 Profile results for laminar@=500 mImin 1) and turbu-
shows the highly nonlinear behavior of the torque term as #ent (1400 mImin %) flows with H,=948 Oe, () =60 Hz, 7
function of spin and frequency derived from Eg). The =1.5us, xo=0.04 and the parameters from Table Il are

spin is zero at the center of the pipe, and at that point thehown in Figs. 7 and 8, respectively. The plots show the
torque in Fig. 6 is approximately zero for most simulations.velocity, spin, and torque profiles, pliksand e profiles for

The spin increases roughly linearly with radial position, sothe turbulent simulation, plotted vs The torque appears to
that the torque follows a line for constafit in Fig. 6. For  be linearly proportional to the spin; this is becaude small
small w7 (near the pipe centgthis is linear, but for largesr  enough to cause the quadratic terms in the torque equation,
(near the pipe wall at high flow ratét is clearly nonlinear. (Q7)2 and (w7)?, to become negligible. Figures 9 and 10
Thus, the behavior in the pipe differs greatly with radial show how the laminar and turbulence variables shown in
position, making the problem complex. The numerical re-Figs. 7 and 8 change relative to the zero magnetic field case
sults are found to be essentially independent of spin boundwith all other parameters the samé&he solution profiles

ary condition because the magnitude of the spin viscosityexcluding the torqueare normalized relative to their respec-
removes the effect of spin diffusion, as was the case whetive maximum value in théd,=0 case. When the magnetic

there was no magnetic field. field is turned on, the laminar velocity profile does not visu-
2.0
1.0 0-.‘.."""0-0“ 002,"‘
-
1.5 0.8 + /7“.‘_‘ .-.‘_.‘_2—
U ‘_‘ 2"
0.6 1 ot
[ et .
1.0 1 0.4 + \‘ .,"" ‘.‘
E ) ‘.‘.
0.2 + _’” ‘e
0.5 - »" ®
0_04»:‘_._3:.0.0.000oooooooooooooooo‘
e T,
0.0 - -0.2 T el
.0.4 | ¢ Profiles with H=0 Oe e
-0.5 - - - Profiles with H=948 Qe
: -0.6 . . : :
o 0 0.2 0.4 0.6 0.8 1
r r

FIG. 7. Simulated profiles for laminar ferrofluid pipe flow with FIG. 9. Profiles from Fig. 7 as compared to tHe=0 case. The
an imposed oscillating magnetic field. The nondimensional profiles/elocity and spin profiles are normalized with respect to the maxi-
are for: velocity, spin, and time-averaged torqueQ mum value of each corresponding dimensional variable inHhe
=500 mImin!; H=948 Oe; 0=60 Hz. The model parameters =0 case. The nondimensional, time averaged torque values are
are as in Table Il withrg=1.5 us andy,=0.04.U is normalized by  directly plotted, where the torque is normalized as in Fig. 7. The
Uac, o by Uy /R, and torque bonS. H=0 case is run using the same parameters as Fig. 7.
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FIG. 10. Profiles from Fig. 8 as compared to tHe=0 Oe casda) velocity; (b) spin; (c) kinetic energy;(d) kinetic energy dissipation
rate; (e) time-averaged torque. The dotted profile is the0 case. The dashed line is fbfr=948 Oe and) =60 Hz. Plots(a)—(d) are
normalized with respect to the maximum dimensional value in the respektiv®d case;U*=450ms?!, »*=10179 s?, k*

=0.21nfs 2 ¢*=216.3nfs 3. Plot(e) is normalized with respect to the negative minimum of the 948 Oe caseT; =141.7. The
H=0 case is run using the same parameters as Fig. 8.

ally change but could be slightly different even though thetime constant, in laminar flow only, is allowed to depend
flow rates are forced to be the same, but the laminar spimpon both flow rate and oscillation frequency. In all turbulent
profile decreases because the torque impedes particle rotsimulations the relaxation time is kept constant. The justifi-

tion. In the turbulent simulation the velocity profiles at the cation of allowingy, and 75 to depend upon experimental
same flow rate are visually distinct. The spin profile de-conditions is given in the “parameters” section.

creases. The kinetic energy and dissipation rates increase andlIn the turbulent simulations a value of the relaxation time
reach their peak values closer to the capillary wall.

has to be estimated, and we use the E%) proposed by
One set of model parameters that fit all of the experimenShliomis[5]. The time constant for the turbulent flow corre-

tal data could not be found. However, by allowing two of the sponding to a particle diameter of 29.5 nm7g=9.8 us.
parameters to depend upon experimental conditions th®sing this value ofrg, magnetic susceptibilities that make
model is able to reproduce and predict experimental datahe model match the turbulent data are found at each field
Specifically, the effective magnetic susceptibility is allowedstrength at 60 Hz and 800 mImih The list of effective

to depend upon magnetic field strength, and the Browniasusceptibilities and corresponding field strengths are given in
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TABLE llI. List of magnetic susceptibilities and corresponding

al.

H.
H (Og¢ Xo
158 0.0479
316 0.0278
474 0.0171
948 0.0063
1264 0.0043

3Extrapolated value.

TABLE IV. List of relaxation times at corresponding and 60

Hz.
Q (mimin~Y) 75 (uS)
342.7 61
482 41
624.2 36

TABLE V. List of relaxation times at correspondir@ and 400

Hz.
Q (mimin™Y) 75 (19
341.5 29
482 245
624.2 20

TABLE VI. List of relaxation times at correspondinQ and

1000 Hz.
Q (mlmin~Y) 8 (uS)
311 24
475 18
611 13
0.16
X158 Oe
0.14 1 A316 Oe
0.12 + +474 Oe
AP 0948 Oe
o - 01T O 01264 Oe
0.08 14
0.06 N\D
ST (P
N A M A
002y, T SR é - 5 X
) — — : .
300 500 700 900 1100 1300 1500
Q (ml / min)
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FIG. 12. Simulated fractional pressure drop results as a function
of Q andH (represented with solid linggompared to experimental
data(represented with data pointat a constant frequency of 400
Hz. Note that a solid line is for a constartvalue. Model param-
eters are as in Table Il. Magnetic susceptibilities are as in Table IIl.
Time constant values are as in Table V. The data points within the
dashed oval are used to determine parameters for this case.

Table lll. After this initial fit, when the frequency is raised
(400 and 1000 Hethe simulation predicts the turbulent data
without having to adjust any parameters. Thus, all turbulent
data (60, 400, and 1000 Hzs predicted using our model
with the parameters in Table I, a constagtof 9.8 us, and
the magnetic susceptibilities in Table IlI.

The susceptibilities at a particuled for the laminar simu-
lations are the same as those found to fit the turbulent data
(see Table Il In laminar flow, the relaxation time is now
allowed to depend upon flow rate and oscillating frequency.
The list of laminar relaxation times and corresponding flow
rates that fit the data at a field strength of 158 Oe and 60 Hz
are given in Table IV. The list of relaxation times at 400 and
1000 Hz are given in Tables V and VI, respectively.

0.04
X158 Oe
0.03 + A316 Oe
ARG
AP(0)
0.02 +
A
- X
X
0 + } + t +
300 500 700 900 1100 1300 1500
Q (ml/ minm)

FIG. 11. Simulated fractional pressure drop results as a function FIG. 13. Simulated fractional pressure drop results as a function

of Q andH (represented with solid linggompared to experimental

of Q andH (represented with solid linggompared to experimental

data(represented with data poinist a constant frequency of 60 Hz. data(represented with data pointat a constant frequency of 1000
Note that a solid line is for a constaht value. Model parameters Hz. Note that a solid line is for a constafdtvalue. Model param-
are as in Table Il. Magnetic susceptibilities are as in Table Ill. Timeeters are as in Table Il. Magnetic susceptibilities are as in Table Il1.
constant values are as in Table IV. The data points within theTime constant values are as in Table VI. The data points within the
dashed oval are used to determine parameters for this case.

dashed oval are used to determine parameters for this case.
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Figures 11-13 show laminar and turbulent fractional pres- VIl. CONCLUSIONS
sure drop results for 60, 400, and 1000 Hz, respectively.
Experimental data are represented with data points; simuIeH1

tion 'results are represented by lines. The simulation resu';Perimental results show different behavior in laminar and
predict th_e laminar ar_ld turbulent experimental data reason,pulent flow regimes. A model based on the equations of
ably well in all three figures. , ferronydrodynamicg11] is used to predict the flow of fer-

In Fig. 11, the predictions for laminar flow ai=316,  rofluid in the unsteady magnetic field. The model accurately
474, and 948 Oe have no adjustable constants. The magnefigedicts the fractional pressure drop as a function of flow
susceptibility is obtained from the turbulent data, but it doesate, magnetic field, and oscillation frequency, in both lami-
not exist forH=1264 Oe. Thus values of susceptibility, de- nar and turbulent flowas shown in Figs. 11-13vhen the
termined in the 60 Hz turbulence fit, are fit to a power for- effective magnetic susceptibility is allowed to depend upon
mula, and then extrapolated to the higher magnetic field. Théhe magnitude of the magnetic field and the relaxation time
model gives slightly over predictive results when extended tdin laminar flow only is a function of flow rate and fre-
H=1264 Oe in Fig. 11. Of the 27 data points shown in Fig.quency.

11, only the 7 that are within the dashed ovals are used to The spin viscosity is estimated to be so small that the spin
determine the parameters; the other 20 data points can tffusion is negligible. This makes simulation results effec-
predicted by the model. In Figs. 12 and 13 only 3 data pointdively independent of the boundary condition of the spin. Our
(within dashed ovalsare used to determine the parameters.s'mU|a“0”5 suggest that spin profiles exh|b|t_a very thin

If the simulations use a value of, four times larger than Poundary layer next to the wall—only a few microns—and
9.8 us, the simulation could only reproduce the data at 60 Hf.h's Is not r_esolved In these.(.:alcula}tlons. For our cal_cula-
(although not reported hereThe data at higher frequencies tions, all spin boundary conditions give the same fractional
could not be predicted because the largecauses the qua- pressure drop.
dratic terms in_th_e torque eq_uation to I_aecome more preva- ACKNOWLEDGMENT
lent, and this limits the maximum fractional pressure drop
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